Atrial Fibrillation (AF)
Patient Information

Providing information, support and access to established, new or innovative treatments for Atrial Fibrillation

Registered Charity No. 1122442
Copyright 2011
Contents

Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-arrhythmic drugs</td>
<td>Drugs used to restore the normal heart rhythm.</td>
</tr>
<tr>
<td>Anticoagulant</td>
<td>Drugs which help to thin the blood.</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>Heart rhythm disorder.</td>
</tr>
<tr>
<td>Arrhythmia Nurse Specialists</td>
<td>A nurse who is trained in heart rhythm disorders.</td>
</tr>
<tr>
<td>Atrial Fibrillation (AF)</td>
<td>Irregular heart rhythm.</td>
</tr>
<tr>
<td>Atrial Flutter</td>
<td>A rhythm disorder characterized by a rapid but regular atrial rate but not as high as Atrial Fibrillation.</td>
</tr>
<tr>
<td>Cardiologist</td>
<td>A doctor who has specialised in the diagnosis and treatment of patients with a heart condition.</td>
</tr>
<tr>
<td>Cardioversion</td>
<td>A therapy to treat Atrial Fibrillation or Atrial Flutter which uses a transthoracic electrical shock to revert the heart back into a normal rhythm.</td>
</tr>
<tr>
<td>Catheter ablation</td>
<td>A treatment which destroys a very small area inside the heart causing the AF.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>A medical term for shortness of breath.</td>
</tr>
<tr>
<td>Echocardiogram</td>
<td>An image of the heart using echocardiography or soundwave-based technology. An echocardiogram (nicknamed “echo”) shows a three-dimensional shot of the heart.</td>
</tr>
<tr>
<td>Echocardiogram or ECG (sometimes EKG)</td>
<td>A representation of the heart’s electrical activity in the form of wavy lines. An ECG is taken from electrodes on the skin surface.</td>
</tr>
<tr>
<td>Electrophysiologist (EP)</td>
<td>A cardiologist who has specialised in heart rhythm disorders.</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>The inability (failure) of the heart to pump sufficient oxygenated blood around the body to meet physiological requirements.</td>
</tr>
<tr>
<td>Rate control of AF</td>
<td>A medical approach to treating atrial fibrillation which does not treat the AF itself, but rather attempts to slow the rapid ventricular response to the fibrillating atria (increased heart rate). Since a fast rate is what is most associated with symptoms, this provides symptomatic relief.</td>
</tr>
<tr>
<td>Rhythm</td>
<td>The pattern of cardiac activity. Strictly speaking, the heart has both a rate (how fast it beats) and a rhythm (the pattern of activity). Rhythm includes the ratio of atrial to ventricular activity.</td>
</tr>
<tr>
<td>Sinus rhythm</td>
<td>Normal rhythm of the heart.</td>
</tr>
<tr>
<td>Stroke</td>
<td>A medical condition which is now referred to as a “brain attack” where the brain is deprived of oxygen. Blockage of blood flow can be created when a blood clot breaks free, travels through the circulatory system and gets lodged in blood vessel long enough to cause a section of the brain to die. Strokes can vary in severity from transient (TIA) to very mild.</td>
</tr>
<tr>
<td>Syncope</td>
<td>A medical term for passing out from lack of oxygen going to certain areas of the brain.</td>
</tr>
</tbody>
</table>
Introduction

Atrial Fibrillation (AF) is the most common heart rhythm disturbance encountered by doctors. It affects approximately 1 million people in the UK alone. It can affect adults of any age, but is more common as people get older. In the over-75-year-old age group it affects about 10% of people. AF accounts directly for over 96,000 hospital admissions and is associated with a further 575,000 hospital admissions per year. AF consumes 1% of the NHS total budget. Left untreated or poorly monitored AF can lead to serious complications such as heart failure and stroke.

The heart during normal rhythm (‘sinus rhythm’)

The heart is a muscular pump, which delivers blood containing oxygen to the body. It is divided into two upper chambers, or “atria”, which collect blood returning via the great veins, and two lower chambers or “ventricles”, which pump blood out through the aorta (main artery) and the lungs. Normally, the heart beats in a regular, organised way, at a rate of 60-100 beats per minute. This is because it is driven by the “sinus node”, a specialised cell situated in the atria, which emits electrical impulses. The sinus node is sometimes referred to as the heart’s natural pacemaker. These electrical impulses spread through the atria and then into the ventricles via a connecting cable (the “AV node”). The sinus node controls the timing of the heart, according to the needs of the body. An example of this is during exercise, when the heart rate speeds up. When the heart is beating normally like this, we refer to it as “sinus rhythm”, or “normal sinus rhythm”.

What is Atrial Fibrillation?

Atrial Fibrillation or AF occurs when chaotic electrical activity develops in the upper chambers of the heart or atria, and completely takes over from the sinus node. As a result the atria no longer beat in an organised way, and pump less efficiently. The AV node will stop some of these very rapid impulses from travelling to the ventricles, but the ventricles will still beat irregularly and possibly rapidly. This may contribute to symptoms of palpitations, shortness of breath, chest discomfort, light headedness, fainting or fatigue. The goal
of treatment in AF is to restore the heart’s normal rhythm and if this is not possible then to slow the irregular heart rate, to alleviate symptoms and prevent complications of AF related to stroke and heart failure.

Who gets Atrial Fibrillation?

There is no “typical” Atrial Fibrillation patient. Atrial Fibrillation occurs in men and women, in all races, and can occur at any age. While it can “run in the family,” most people diagnosed with Atrial Fibrillation will not have a family history of the disease. Some events and diseases may make AF more likely, but it can also occur without warning.

What causes Atrial Fibrillation?

Atrial Fibrillation is related to age; the older you get, the more likely you are to develop it. Men and women are equally susceptible to the disease. Atrial Fibrillation is frequently noted after an “open heart” operation. Other conditions or diseases can also increase your risk of getting Atrial Fibrillation. This does not mean that Atrial Fibrillation always develops but the risk does increase. Below are several conditions associated with Atrial Fibrillation:

- High blood pressure
- Coronary heart disease
- Mitral valve disease (caused by rheumatic heart disease, valve problems at birth, or infection)
- Congenital heart disease (abnormality of the heart present since birth)
- Pneumonia
- Lung cancer
- Pulmonary embolism
- Overactive thyroid
- Carbon monoxide poisoning

In addition, alcohol and drug abuse or misuse may predispose you to Atrial Fibrillation. While your risk of Atrial Fibrillation goes up with the above mentioned problems, many people develop Atrial Fibrillation for no explainable reason.

What are the symptoms of Atrial Fibrillation?

Some AF patients do not experience symptoms, however for those who do common symptoms are:

- Palpitation, (or awareness of the heartbeat), which may be rapid
- Tiredness
- Shortness of breath
- Dizziness
- Chest pain
Some people with AF have no symptoms at all and it is only discovered at a routine medical examination. The easiest way to detect AF is to feel the pulse!

Are there different types of Atrial Fibrillation?

Yes, early in the disease, Atrial Fibrillation is often intermittent, meaning that it can come and go without warning and you may go long periods of time between “spells”. When Atrial Fibrillation first occurs, the early episodes may be brief and cause very mild symptoms. In fact, some people with this early-stage Atrial Fibrillation may not even know they have it. AF falls into one of three categories that describe the progression of the disease, ranging from occasional episodes to the complete absence of a normal heart rhythm:

1. **Paroxysmal AF** – multiple episodes that cease within 7 days without treatment;
2. **Persistent AF** – episodes lasting longer than 7 days, or less than 7 days when treated;
3. **Longstanding persistent AF** – continuous AF with more than one-year duration.

How do I get to see the right doctor to treat my AF?

Initially you will usually consult your general practitioner who may arrange some investigations before possibly referring you to a cardiologist (heart specialist) – who may or may not have a specialist interest in heart rhythm disorders. After appropriate diagnosis, some patients will respond to medication and in this case it may be that no further treatment will be required.

You may be referred to a cardiologist who specialises in heart rhythm disorders usually called an electrophysiologist (EP) – this type of doctor will offer ablation treatments, and some will perform large numbers of ablation procedures for Atrial Fibrillation. If you are seen by a general cardiologist you may be referred on to see an electrophysiologist, but if this is not offered you can request specialist referral from either your general practitioner or cardiologist. The outcomes from Atrial Fibrillation ablation, as with many other procedures, are generally better in more experienced hands. Before proceeding with ablation you should ask the electrophysiologist about his / her personal level of experience and results. A team approach to Atrial Fibrillation ablation is important and you should also ask about the number of cases performed in the hospital where you will have the procedure. An electrophysiologist who has a specialist interest in Atrial Fibrillation ablation will usually perform over 50 procedures of this type per
year. For further information on local EPs contact Atrial Fibrillation Association.

To summarise, these are the services typically offered by each type of doctor:

1. **General Practitioner** - overall responsibility for patient care and prescription of medication. May offer simple investigations and monitoring of anticoagulation therapy.

2. **General Physician / Cardiologist** – investigation of heart disease, initiation and monitoring of drug treatment, cardioversion.

3. **Electrophysiologist** – all aspects of heart rhythm diagnosis and treatment, including ablation procedures. Some electrophysiologists perform a high volume of ablation procedures for Atrial Fibrillation.

What are the risks of Atrial Fibrillation?

The main risk associated with AF is stroke. This occurs because the atria are fibrillating and not beating in a co-ordinated way. As a result, the blood in the atria can become stagnant and then does not flow through the heart smoothly. This causes blood cells to stick together and form a clot (an embolism) which can travel to the brain and result in a stroke.

Having an uncontrolled heart rate for long periods of time (weeks or months) can damage the heart and you should check with your doctor that your heart rate is controlled adequately. In extreme cases, often when the rate is very fast or when it happens in a damaged heart, AF can cause heart failure, which means that the heart becomes weak as a result of the rapid rhythm. As the heart weakens, blood flows back into the lungs and affects the normal breathing pattern. Over time, AF is also associated with an increased risk of death, however in general AF is not considered a life-threatening disease in its own right. Why AF is associated with increased risk of death is not understood.

Tests / investigations

First, it is important to check that you do actually have AF. This is confirmed by a heart tracing called an electrocardiogram (ECG). The ECG may be a simple recording made in real time, or a continuous monitor, worn for 24 hours or more, to look for episodes of AF. Heart monitors are painless and allow your doctor to record your rhythm for several days during various activities in an attempt to diagnose the condition of Atrial Fibrillation. You may need to have an echocardiogram (an ultrasound scan of the heart) which can assess the structure and overall function of the heart and you may also need to have blood tests.
Treatment of Atrial Fibrillation

Many factors can influence the best therapy for your individual case. The good news for people with Atrial Fibrillation is that there are a greater range of treatments and more effective treatments than ever before.

Drug Treatments

Currently, drugs are the most usual treatment for AF, and have the aim of alleviating symptoms and reducing the likelihood of stroke. Commonly prescribed medicines include Bisoprolol, Verapamil, Diltiazem, Flecainide, Amiodarone, and Digoxin. These drugs are used in two different ways, some are used to restore the normal heart rhythm, these are known as anti-arrhythmic drugs. They work by blocking specific channels in the cardiac cell.

Where as beta blockers are commonly used to slow the heart rate and are effective in active patients with better exercise capacity. In some patients with infrequent sustained episodes of AF, Flecainide or Propafenone may be given as a single dose at the beginning of the attack. This is known as the “pill in the pocket” method. However, this is only safe when patients are carefully trained to undertake this procedure and practice it first in the hospital setting.

A booklet entitled ‘Drug Information for Atrial Fibrillation’ is available from the Atrial Fibrillation Association.

Non-drug treatments

In some individuals the episodes of Atrial Fibrillation are both severe and frequent, affecting their quality of life. If drug treatments do not work or cause unpleasant side effects, it may be necessary to offer a different solution.

Physicians may elect to perform a cardioversion, a procedure in which an electric current is delivered through special gel pads positioned on the chest wall. Cardioversion will often “shock” the heart back into its regular rhythm. For some an additional procedure called surgical ablation may be performed to treat AF. The surgical procedure involves making multiple, strategically placed incisions, or lesions, in the upper chambers of the heart. These lesions are intended to isolate and stop the abnormal electrical impulses that cause AF, thereby restoring the heart to normal sinus rhythm (NSR).
For many patients not needing surgery, a less-invasive procedure called catheter ablation is now thought by many specialists to be the most appropriate treatment. In 2006, the National Institute for Health and Clinical Excellence (NICE) issued a guidance document that supports catheter ablation for patients with AF who are not adequately treated with drugs. According to the NICE guidelines, catheter ablation can successfully cure AF in up to 80% of patients and reduce mortality by more than 50%.

‘The Catheter Ablation for AF Patients’ booklet is available from the Atrial Fibrillation Association.

Stroke prevention

In AF the chaotic electrical activity means that the atria (top chambers of the heart) no longer contract together but instead the muscle quivers like a bag of worms. A lack of efficient contraction means the blood within the atria becomes stagnant and can form clots. These clots can travel anywhere in the body, but most worryingly, they can travel to the brain and cause a stroke. Indeed the risk of stroke in AF is 5 times greater than in the normal sinus rhythm (regular heart rhythm). This is why people with AF need to have their blood thinned to reduce the risk of clots forming and thus reduce the risk of strokes.

What blood thinning options are available for doctors to use?

Clots are made up of 2 main components from the blood. These two components are (i) fibrin, a long protein that binds together to form a mesh and (ii) platelets, small cell particles that stick to the mesh and help to hold it together once they become active. The blood can be thinned to different degrees by attacking each of these components. Drugs like Warfarin and Heparin act to stop the formation of fibrin and are known as anticoagulants, whilst aspirin and clopidogrel are drugs that stop the activation of platelets and are known as anti-platelet agents.

Anticoagulants

By inhibiting the formation of the fibrin network, Warfarin and Heparin act to thin the blood very efficiently and can reduce the risk of stroke by up to 60%.

Warfarin

Of the available oral anticoagulants Warfarin is by far the most commonly used in the United Kingdom. Warfarin acts on the liver to prevent the
formation of the proteins that go on to create fibrin. As our bodies have
stores of these proteins that last a few days, Warfarin will only start
to thin the blood efficiently after a few days. When you first start
taking Warfarin you will attend the anti-coagulant clinic weekly as they
adjust your dose to suit you. Most people find once they are established
on Warfarin their INR is pretty stable and they need only attend the clinic
every 6-8 weeks. However you have to watch out for things that can
affect your Warfarin level to keep it stable, such as alcohol, certain
food items and other medication, including cough remedies, herbal cures
and many other over-the-counter medications. In short you are fine to
have a couple of paracetamol for a headache but anything else you
should seek the advice of your doctor or chemist.

Anti-platelets

Aspirin and clopidogrel act in slightly different ways to prevent the
activation of platelets. As they affect the platelets that are circulating in
the blood they are effective almost immediately. However as platelets
are not so vital for clot formation in the atria they are less effective than
anti-coagulants at preventing strokes, reducing the stroke risk in AF by
20%. In some people who are at very low risk of stroke this is sufficient.

‘Which drug is best for me?’

The choice of which drug is best for you depends on: (i) your personal
risk of stroke and (ii) if any intervention like cardioversion or ablation are
planned.

A more detailed booklet on Blood Thinning in Atrial Fibrillation is available
from the Atrial Fibrillation Association.

Arrhythmia Nurse Specialists

Many hospitals now employ Arrhythmia Nurse Specialists (ANS). The ANS
is a dedicated point of contact and is available to offer you and your family
support and guidance throughout the treatment of your arrhythmia. They
work within Local and National frameworks to deliver the highest quality
of care giving patients the appropriate information about their condition
and how best it can be managed. For further information contact your local
hospital.

AF and driving

Up to date guidance on this can be found on www.dvla.gov.uk
MEMBERSHIP APPLICATION FORM

Membership is free, however donations are gratefully received. Cheques should be made payable to AFA.
If you are interested in receiving further information, becoming a volunteer or fundraiser, please do not hesitate to contact us.

PLEASE PRINT -
Patient

Title: Mr / Mrs / Miss / Ms / Dr

Full Name: ___________________________
Address: _____________________________

Postcode: ____________________________
Daytime Telephone no: _______________________
Evening Telephone no: _______________________
E-mail: _______________________________
Date of Birth: _________________________

Patient Diagnosed: Yes ☐ No ☐

Diagnosis: _______________________
If Diagnosed by whom:
GP ☐ Cardiologist ☐
Geriatrician ☐ Paediatrician ☐

Name: _______________________
Hospital/Medical Centre: _______________

Tick box if happy to receive newsletters and updates from AFA ☐

Registered Charity No: 1122442

GIFT AID DECLARATION

Name of taxpayer: ___________________________
Address: _________________________________
Postcode: ________________________________

Please tick to allow AFA to claim an extra 28p for every £1 you donate, at no cost to you.
I want AFA to treat all donations I make from the date of this declaration until I notify you otherwise, as Gift Aid donations.
I currently pay an amount of income tax and/or capital gains tax at least equal to the tax that AFA reclains on my donations in the tax year (currently 28p for each £). I may cancel this declaration at any time by notifying AFA.
I will notify AFA if I change my name or address. Please note full details of Gift Aid tax relief are available from your local tax office in leaflet IR 65. If you pay tax at the higher rate you can claim further tax relief in your Self-Assessment tax return.

PLEASE RETURN TO: AFA, PO Box 1219, Chew Magna, BRISTOL BS40 8WB
Telephone: 01789 451 837 Email: info@afa.org.uk
Registered Charity No: 1122442 © 2011
Acknowledgements:

The Atrial Fibrillation Association (AFA) would like to thank the GPs, cardiologists and nurses who helped develop these booklets. Particular thanks is given to Professor A John Camm, Dr Neil Davidson, Dr Matthew Fay, Angela Griffiths and Sandra Jackson for their work on this booklet.

Trustees:
Professor A John Camm
Mrs Jayne Mudd
Professor Richard Schilling

Patron:
Baroness Smith of Gilmorehill
Baron Maples of Stratford upon Avon

AFA Medical Advisory Committee:
Dr Campbell Cowan Dr Matthew Fay Dr Adam Fitzpatrick
Dr Andrew Grace Professor Gregory Y H Lip Dr Andreas Wolff

Director & Chief Executive:
Mrs Trudie Lobban

Assistant Director:
Mrs Jo Jerrome

Please remember these are general guidelines and individuals should always discuss their condition with their own doctor.